Running Variability in Marathon—Evaluation of the Pacing Variables

Author:

Cuk Ivan1ORCID,Markovic Srdjan2ORCID,Weiss Katja3ORCID,Knechtle Beat34ORCID

Affiliation:

1. Faculty of Sport and Physical Education, University of Belgrade, 11000 Belgrade, Serbia

2. Faculty of Physical Education and Sports Management, Singidunum University, 11000 Belgrade, Serbia

3. Institute of Primary Care, University of Zurich, 8006 Zurich, Switzerland

4. Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland

Abstract

Background and Objectives: Pacing analyses for increasingly popular long-distance running disciplines have been in researchers’ spotlight for several years. In particular, assessing pacing variability in long-distance running was hardly achievable since runners must repeat long-running trials for several days. Potential solutions for these problems could be multi-stage long-distance running disciplines. Therefore, this study aimed to assess the long-distance running variability as well as the reliability, validity, and sensitivity of the variables often used for pacing analyses. Materials and Methods: This study collected the split times and finish times for 20 participants (17 men and three women; mean age 55.5 years ± 9.5 years) who completed the multiday marathon running race (five marathons in 5 days), held as part of the Bretzel Ultra Tri in Colmar, France, in 2021. Seven commonly used pacing variables were subsequently calculated: Coefficient of variation (CV), Change in mean speed (CS), Change in first lap speed (CSF), Absolute change in mean speed (ACS), Pace range (PR), Mid-race split (MRS), and First 32 km–10 km split (32-10). Results: Multi-stage marathon running showed low variability between days (Intraclass correlation coefficient (ICC) > 0.920), while only the CV, ACS, and PR variables proved to have moderate to good reliability (0.732 < ICC < 0.785). The same variables were also valid (r > 0.908), and sensitive enough to discern between runners of different performance levels (p < 0.05). Conclusions: Researchers and practitioners who aim to explore pacing in long-distance running should routinely utilize ACS, CV, and PR variables in their analyses. Other examined variables, CS, CSF, MRS, and 32-10, should be used cautiously. Future studies might try to confirm these results using different multi-stage event’s data as well as by expanding sensitivity analysis to age and gender differences.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3