Preliminary Biochemical Description of Brain Oxidative Stress Status in Irritable Bowel Syndrome Contention-Stress Rat Model

Author:

Balmus Ioana-Miruna,Lefter Radu,Ciobica Alin,Cojocaru Sabina,Guenne SamsonORCID,Timofte DanielORCID,Stanciu Carol,Trifan Anca,Hritcu Luminita

Abstract

Background and objectives: Oxidative stress and inflammation have been implicated in the etiology of irritable bowel syndrome (IBS), a common gastrointestinal functional disease. This study aimed to further characterize the contention-stress rat model by exploring a possible correlation between oxidative stress markers measured in brain tissues with behavioral components of the aforementioned model. Thus, it is hereby proposed a possible IBS animal model relevant to pharmacological and complementary medicine studies. Materials and Methods: Wild-type male Wistar rats (n = 5/group) were chronically exposed to 6-hour/day contention, consisting of isolating the animals in small, vital space-granting plastic devices, for seven consecutive days. Following contention exposure, temporal lobes were extracted and subjected to biochemical analyses to assess oxidative stress-status parameters. Results: Our results show increased brain oxidative stress in contention-stress rat model: decreased superoxide dismutase and glutathione peroxidase activities and increased malondialdehyde production in the IBS group, as compared to the control group. Furthermore, the biochemical ratios which are used to evaluate the effectiveness of an antioxidant system on oxidative stress could be described in this model. Conclusions: The correlations between the behavioral patterns and biochemical oxidative stress features could suggest that this may be a complex model, which can successfully mimic IBS symptomatology further providing evidence of a strong connection between the digestive system, enteric nervous system, and the central nervous system.

Funder

UEFISCDI

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3