Abstract
Treatment resistance is prevalent in early intervention in psychosis services, and causes a significant burden for the individual. A wide range of variables are shown to contribute to treatment resistance in first episode psychosis (FEP). Heterogeneity in illness course and the complex, multidimensional nature of the concept of recovery calls for an evidence base to better inform practice at an individual level. Current gold standard treatments, adopting a ‘one-size fits all’ approach, may not be addressing the needs of many individuals. This following review will provide an update and critical appraisal of current clinical practices and methodological approaches for understanding, identifying, and managing early treatment resistance in early psychosis. Potential new treatments along with new avenues for research will be discussed. Finally, we will discuss and critique the application and translation of machine learning approaches to aid progression in this area. The move towards ‘big data’ and machine learning holds some prospect for stratifying intervention-based subgroups of individuals. Moving forward, better recognition of early treatment resistance is needed, along with greater sophistication and precision in predicting outcomes, so that effective evidence-based treatments can be appropriately tailored to the individual. Understanding the antecedents and the early trajectory of one’s illness may also be key to understanding the factors that drive illness course.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献