St. Thomas Modified Cardioplegia Effects on Myoblasts’ Viability and Morphology

Author:

Nowicki RafałORCID,Bieżuńska-Kusiak Katarzyna,Kulbacka JulitaORCID,Choromanska AnnaORCID,Daczewska Małgorzata,Potoczek Stanisław,Rachwalik Maciej,Saczko JolantaORCID

Abstract

Background and Objectives: The cardioplegic arrest of the heart during cardiosurgical procedures is the crucial element of a cardioprotection strategy. Numerous clinical trials compare different cardioplegic solutions and cardioprotective protocols, but a relatively small number of papers apply to in vitro conditions using cultured cells. This work aimed to analyze whether it is possible to use the rat heart myocardium cells as an in vitro model to study the protective properties of St. Thomas cardioplegia (ST2C). Methods: The rat heart myocardium cells-H9C2 were incubated with cold cardioplegia for up to 24 h. After incubation, we determined: viability, confluency, and cell size, the thiol groups’ level by modifying Ellman’s method, Ki67, and Proliferating Cell Nuclear Antigen expression (PCNA). The impact on cells’ morphology was visualized by the ultrastructural (TEM) study and holotomograpic 3D imaging. Results: The viability and confluency analysis demonstrated that the safest exposure to ST2C, should not exceed 4h. An increased expression of Ki67 antigen and PCNA was observed. TEM and 3D imaging studies revealed vacuolization after the longest period of exposure (24). Conclusions: According to obtained results, we conclude that STC can play a protective role in cardiac surgery during heart arrest.

Funder

This research was funded by the subsidy of Wroclaw Medical University .

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3