Temporal Changes in Functional and Structural Neuronal Activities in Auditory System in Non-Severe Blast-Induced Tinnitus

Author:

Shao Ningning1,Skotak Maciej1ORCID,Pendyala Navya1,Rodriguez Jose1ORCID,Ravula Arun Reddy1,Pang Kevin23,Perumal Venkatesan1ORCID,Rao Kakulavarapu V. Rama1,Chandra Namas1

Affiliation:

1. Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 111 Lock Street, Newark, NJ 07102, USA

2. NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ 07018, USA

3. Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA

Abstract

Background and Objectives: Epidemiological data indicate that blast exposure is the most common morbidity responsible for mild TBI among Service Members (SMs) during recent military operations. Blast-induced tinnitus is a comorbidity frequently reported by veterans, and despite its wide prevalence, it is also one of the least understood. Tinnitus arising from blast exposure is usually associated with direct structural damage that results in a conductive and sensorineural impairment in the auditory system. Tinnitus is also believed to be initiated by abnormal neuronal activities and temporal changes in neuroplasticity. Clinically, it is observed that tinnitus is frequently accompanied by sleep disruption as well as increased anxiety. In this study, we elucidated some of the mechanistic aspects of sensorineural injury caused by exposure to both shock waves and impulsive noise. The isolated conductive auditory damage hypothesis was minimized by employing an animal model wherein both ears were protected. Materials and Methods: After the exposure, the animals’ hearing circuitry status was evaluated via acoustic startle response (ASR) to distinguish between hearing loss and tinnitus. We also compared the blast-induced tinnitus against the well-established sodium salicylate-induced tinnitus model as the positive control. The state of the sensorineural auditory system was evaluated by auditory brainstem response (ABR), and this test helped examine the neuronal circuits between the cochlea and inferior colliculus. We then further evaluated the role of the excitatory and inhibitory neurotransmitter receptors and neuronal synapses in the auditory cortex (AC) injury after blast exposure. Results: We observed sustained elevated ABR thresholds in animals exposed to blast shock waves, while only transient ABR threshold shifts were observed in the impulsive noise group solely at the acute time point. These changes were in concert with the increased expression of ribbon synapses, which is suggestive of neuroinflammation and cellular energy metabolic disorder. It was also found that the onset of tinnitus was accompanied by anxiety, depression-like symptoms, and altered sleep patterns. By comparing the effects of shock wave exposure and impulsive noise exposure, we unveiled that the shock wave exerted more significant effects on tinnitus induction and sensorineural impairments when compared to impulsive noise. Conclusions: In this study, we systematically studied the auditory system structural and functional changes after blast injury, providing more significant insights into the pathophysiology of blast-induced tinnitus.

Funder

Congressionally Directed Medical Research Program CDMRP

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3