Abstract
Background and Objectives: This study aimed to objectively determine microsatellite instability (MSI) status using a next-generation sequencing (NGS)-based MSI panel and to resolve the discrepancy regarding whether or not MSI is a rare phenomenon, irrespective of diverse genomic alterations in gastrointestinal stromal tumors (GISTs). Materials and Methods: Genomic DNA was subjected to MSI panel sequencing using an Ion AmpliSeq Microsatellite Instability Assay, as well as to cancer gene panel sequencing using an Oncomine Focus DNA Assay. Results: All of our GIST patients showed microsatellite-stable (MSS) status, which confirmed that MSI status did not affect the molecular pathogenesis of GIST. The KIT gene (79%, 38/48) was the most frequently mutated gene, followed by the PDGFRA (8%, 4/48), PIK3CA (8%, 4/48), and ERBB2 (4%, 2/48) mutations. KIT exon 11 mutant patients were more favorable in responding to imatinib than those with exon 9 mutant or wild-type GISTs, and compared to non-KIT exon 11 mutant GISTs (p = 0.041). The NGS-based MSI panel with MSICall confirmed a rare phenomenon of microsatellite instability in GISTs irrespective of diverse genomic alterations. Conclusion: Massively parallel sequencing can simultaneously provide the MSI status as well as the somatic mutation profile in a single test. This combined approach may help us to understand the molecular pathogenesis of GIST carcinogenesis and malignant progression.
Funder
Fukuoka Foundation for Sound Health Cancer Research Fund
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献