Vitamin D and Glomerulonephritis

Author:

Gembillo GuidoORCID,Siligato RossellaORCID,Amatruda Michela,Conti GiovanniORCID,Santoro DomenicoORCID

Abstract

Vitamin D presents a plethora of different functions that go beyond its role in skeletal homeostasis. It is an efficient endocrine regulator of the Renin–Angiotensin–Aldosterone System (RAAS) and erythropoiesis, exerts immunomodulatory effects, reduces the cardiovascular events and all-cause mortality. In Chronic Kidney Disease (CKD) patients, Vitamin D function is impaired; the renal hydrolyzation of its inactive form by the action of 1α-hydroxylase declines at the same pace of reduced nephron mass. Moreover, Vitamin D major carrier, the D-binding protein (DBP), is less represented due to Nephrotic Syndrome (NS), proteinuria, and the alteration of the cubilin–megalin–amnionless receptor complex in the renal proximal tubule. In Glomerulonephritis (GN), Vitamin D supplementation demonstrated to significantly reduce proteinuria and to slow kidney disease progression. It also has potent antiproliferative and immunomodulating functions, contributing to the inhibitions of kidney inflammation. Vitamin D preserves the structural integrity of the slit diaphragm guaranteeing protective effects on podocytes. Activated Vitamin D has been demonstrated to potentiate the antiproteinuric effect of RAAS inhibitors in IgA nephropathy and Lupus Nephritis, enforcing its role in the treatment of glomerulonephritis: calcitriol treatment, through Vitamin D receptor (VDR) action, can regulate the heparanase promoter activity and modulate the urokinase receptor (uPAR), guaranteeing podocyte preservation. It also controls the podocyte distribution by modulating mRNA synthesis and protein expression of nephrin and podocin. Maxalcalcitol is another promising alternative: it has about 1/600 affinity to vitamin D binding protein (DBP), compared to Calcitriol, overcoming the risk of hypercalcemia, hyperphosphatemia and calcifications, and it circulates principally in unbound form with easier availability for target tissues. Doxercalciferol, as well as paricalcitol, showed a lower incidence of hypercalcemia and hypercalciuria than Calcitriol. Paricalcitol demonstrated a significant role in suppressing RAAS genes expression: it significantly decreases angiotensinogen, renin, renin receptors, and vascular endothelial growth factor (VEGF) mRNA levels, thus reducing proteinuria and renal damage. The purpose of this article is to establish the Vitamin D role on immunomodulation, inflammatory and autoimmune processes in GN.

Publisher

MDPI AG

Subject

General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3