Affiliation:
1. Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
2. Department of Anesthesiology and Intensive Therapy, Semmelweis University, 1085 Budapest, Hungary
Abstract
Intraoperative hypotension (IH) is a frequent phenomenon affecting a substantial number of patients undergoing general anesthesia. The occurrence of IH is related to significant perioperative complications, including kidney failure, myocardial injury, and even increased mortality. Despite advanced hemodynamic monitoring and protocols utilizing goal directed therapy, our management is still reactive; we intervene when the episode of hypotension has already occurred. This literature review evaluated the Hypotension Prediction Index (HPI), which is designed to predict and reduce the incidence of IH. The HPI algorithm is based on a machine learning algorithm that analyzes the arterial pressure waveform as an input and the occurrence of hypotension with MAP <65 mmHg for at least 1 min as an output. There are several studies, both retrospective and prospective, showing a significant reduction in IH episodes with the use of the HPI algorithm. However, the level of evidence on the use of HPI remains very low, and further studies are needed to show the benefits of this algorithm on perioperative outcomes.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献