The Role of DNA Repair (XPC, XPD, XPF, and XPG) Gene Polymorphisms in the Development of Myeloproliferative Neoplasms

Author:

Crișan Adriana-Stela12ORCID,Tripon Florin12ORCID,Bogliș Alina12ORCID,Crauciuc George-Andrei12,Trifa Adrian P.3ORCID,Lázár Erzsébet4,Macarie Ioan4,Gabor Manuela Rozalia5ORCID,Bănescu Claudia12ORCID

Affiliation:

1. Genetics Department, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gheorghe Marinescu 38, 540142 Targu Mures, Romania

2. Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gheorghe Marinescu 38, 540139 Targu Mures, Romania

3. Department of Genetics, ‘Victor Babeș’ University of Medicine and Pharmacy, 300041 Timisoara, Romania

4. Department of Internal Medicine, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania

5. Department of Economic Sciences, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology, 540136 Targu Mures, Romania

Abstract

Background and Objectives: Several polymorphisms have been described in various DNA repair genes. Nucleotide excision DNA repair (NER) detects defects of DNA molecules and corrects them to restore genome integrity. We hypothesized that the XPC, XPD, XPF, and XPG gene polymorphisms influence the appearance of myeloproliferative neoplasms (MPNs). Materials and Methods: We investigated the XPC 1496C>T (rs2228000, XPC Ala499Val), XPC 2920A>C (rs228001, XPC Lys939Gln), XPD 2251A>C (rs13181, XPD Lys751Gln), XPF-673C>T (rs3136038), XPF 11985A>G (rs254942), and XPG 3507G>C (rs17655, XPG Asp1104His) polymorphisms by polymerase chain reaction–restriction fragment length polymorphism analysis in 393 MPN patients [153 with polycythemia vera (PV), 201 with essential thrombocythemia (ET), and 39 with primary myelofibrosis (PMF)] and 323 healthy controls. Results: Overall, we found that variant genotypes of XPD 2251A>C were associated with an increased risk of MPN (OR = 1.54, 95% CI = 1.15–2.08, p = 0.004), while XPF-673C>T and XPF 11985A>G were associated with a decreased risk of developing MPN (OR = 0.56, 95% CI = 0.42–0.76, p < 0.001; and OR = 0.26, 95% CI = 0.19–0.37, p < 0.001, respectively). Conclusions: In light of our findings, XPD 2251A>C polymorphism was associated with the risk of developing MPN and XPF-673C>T and XPF 11985A>G single nucleotide polymorphisms (SNPs) may have a protective role for MPN, while XPC 1496C>T, XPC 2920A>C, and XPG 3507G>C polymorphisms do not represent risk factors in MPN development.

Funder

Project entitled “Next generation sequencing—o tehnica valoroasa pentru evaluarea impactului mutatiilor somatice aditionale la pacientii tineri cu neo-plasme mieloproliferative non-BCR-ABL”

Publisher

MDPI AG

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3