Affiliation:
1. Department of Anesthesiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
2. Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
Abstract
Background and Objectives: As the latest research encourages the ultrasound-guided infraclavicular central venous approach, due to the lateral puncture site displacement, in comparison to the anatomical landmark technique based on subclavian vein catheterization, the need to re-calculate the optimal catheter insertion length and possibly to rename the punctuated vessel emerges. Although naming a particular anatomical structure is a nomenclature issue, a suboptimal catheter position can be associated with multiple life-threatening complications and must be avoided. The main study objective is to determine the optimal catheter insertion length by the most proximal ultrasound-guided, in-plane infraclavicular central vein approach, to compare results with the anatomical landmark technique based on subclavian vein catheterization and to clarify the punctuated anatomical structure. Materials and Methods: 109 patients were enrolled in this study. All procedures were performed according to the same catheterization protocol. In order to determine optimal insertion length, chest X-ray scans with an existing catheter were performed. The definition of punctuated vessel was based on computer tomography and evaluated by radiologists. Independent predictors for optimal insertion length were identified, prediction equations were generated. Results: The optimal catheter insertion length is approximately 1.5 cm longer than estimated by Pere’s formula and can be accurately calculated based on anthropometric data. Computed tomography revealed: five cases with subclavian vein puncture and three cases with axillary vein puncture. Conclusions: Even the most proximal ultrasound-guided infraclavicular central vein access does not guarantee subclavian vein catheterization. A more accurate term could be infraclavicular central venous access, with the implication that the entry point could be through either subclavian or axillary veins. The optimal insertion length is approximately 1.5 cm deeper than the length determined for the anatomical landmark technique based on subclavian vein catheterization.