Amentoflavone Mitigates Cyclophosphamide-Induced Pulmonary Toxicity: Involvement of -SIRT-1/Nrf2/Keap1 Axis, JAK-2/STAT-3 Signaling, and Apoptosis

Author:

Balaha Mohamed F.12ORCID,Alamer Ahmed A.1ORCID,Aldossari Rana M.3,Aodah Alhussain H.4ORCID,Helal Azza I.5,Kabel Ahmed M.26ORCID

Affiliation:

1. Clinical Pharmacy Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Pharmacology Department, Faculty of Medicine, Tanta University, El-Gish Street, Tanta 31527, Egypt

3. Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

4. Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

5. Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

6. National Committee of Drugs, Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo 11694, Egypt

Abstract

Background and objectives: Cyclophosphamide (CPA) is an alkylating agent that is used for the management of various types of malignancies and as an immunosuppressive agent for the treatment of immunological disorders. However, its use is limited by its potential to cause a wide range of pulmonary toxicities. Amentoflavone (AMV) is a flavonoid that had proven efficacy in the treatment of disease states in which oxidative stress, inflammation, and apoptosis may play a pathophysiologic role. This study investigated the potential ameliorative effects of the different doses of AMV on CPA-induced pulmonary toxicity, with special emphasis on its antioxidant, anti-inflammatory, and apoptosis-modulating effects. Materials and methods: In a rat model of CPA-induced pulmonary toxicity, the effect of AMV at two dose levels (50 mg/kg/day and 100 mg/kg/day) was investigated. The total and differential leucocytic counts, lactate dehydrogenase activity, and levels of pro-inflammatory cytokines in the bronchoalveolar lavage fluid were estimated. Also, the levels of oxidative stress parameters, sirtuin-1, Keap1, Nrf2, JAK2, STAT3, hydroxyproline, matrix metalloproteinases 3 and 9, autophagy markers, and the cleaved caspase 3 were assessed in the pulmonary tissues. In addition, the histopathological and electron microscopic changes in the pulmonary tissues were evaluated. Results: AMV dose-dependently ameliorated the pulmonary toxicities induced by CPA via modulation of the SIRT-1/Nrf2/Keap1 axis, mitigation of the inflammatory and fibrotic events, impaction of JAK-2/STAT-3 axis, and modulation of the autophagic and apoptotic signals. Conclusions: AMV may open new horizons towards the mitigation of the pulmonary toxicities induced by CPA.

Funder

the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3