Pharmacology-Based Prediction of the Targets and Mechanisms for Icariin against Myocardial Infarction

Author:

Ke Zunping1ORCID,Wang Yuling2,Silimu Guzailinur3,Wang Zhangsheng4,Gao Aimei5

Affiliation:

1. Department of Geriatrics, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China

2. Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China

3. Department of Cardiology, People’s Hospital of Zepu County, Xinjiang 844899, China

4. Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Kashgar 200437, China

5. Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China

Abstract

Background and Objectives: This study aims to illustrate the mechanisms underlying the therapeutic effect of Icariin after myocardial infarction (MI). Materials and Methods: Based on the network pharmacology strategy, we predict the therapeutic targets of Icariin against MI and investigate the pharmacological molecular mechanisms. A topological network was created. Biological process and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were also performed. We also conducted the molecular docking analysis to stimulate the component–target interaction further and validate the direct bind effect. Results: Network pharmacology analysis identified 61 candidate genes related to the therapeutic effect of Icariin against MI. EGFR, AKT1, TP53, JUN, ESR1, PTGS2, TNF, RELA, HSP90AA1, and BCL2L1 were identified as hub genes. The biological processes of the candidate targets were significantly involved in the reactive oxygen species metabolic process, response to hypoxia, response to decreased oxygen levels, response to oxidative stress, regulation of reactive oxygen species metabolic process, and so forth. Overall, biological process enrichment analysis indicated that the protective effect of Icariin against MI might be associated with oxidative stress. Moreover, the pathway analysis showed that the candidate targets were closely associated with lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, etc. We identified the conformation with the lowest affinity score as the docking conformation. The simulated molecular docking was displayed to illustrate the topical details of the binding sites between Icariin and TNF protein. Conclusions: This study provides an overview of the mechanisms underlying the protective effect of Icariin against MI.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3