Artificial Intelligence-Augmented Propensity Score, Cost Effectiveness and Computational Ethical Analysis of Cardiac Arrest and Active Cancer with Novel Mortality Predictive Score

Author:

Monlezun Dominique J.ORCID,Sinyavskiy Oleg,Peters Nathaniel,Steigner Lorraine,Aksamit Timothy,Girault Maria Ines,Garcia Alberto,Gallagher ColleenORCID,Iliescu Cezar

Abstract

Background and objectives: Little is known about outcome improvements and disparities in cardiac arrest and active cancer. We performed the first known AI and propensity score (PS)-augmented clinical, cost-effectiveness, and computational ethical analysis of cardio-oncology cardiac arrests including left heart catheterization (LHC)-related mortality reduction and related disparities. Materials and methods: A nationally representative cohort analysis was performed for mortality and cost by active cancer using the largest United States all-payer inpatient dataset, the National Inpatient Sample, from 2016 to 2018, using deep learning and machine learning augmented propensity score-adjusted (ML-PS) multivariable regression which informed cost-effectiveness and ethical analyses. The Cardiac Arrest Cardio-Oncology Score (CACOS) was then created for the above population and validated. The results informed the computational ethical analysis to determine ethical and related policy recommendations. Results: Of the 101,521,656 hospitalizations, 6,656,883 (6.56%) suffered cardiac arrest of whom 61,300 (0.92%) had active cancer. Patients with versus without active cancer were significantly less likely to receive an inpatient LHC (7.42% versus 20.79%, p < 0.001). In ML-PS regression in active cancer, post-arrest LHC significantly reduced mortality (OR 0.18, 95%CI 0.14–0.24, p < 0.001) which PS matching confirmed by up to 42.87% (95%CI 35.56–50.18, p < 0.001). The CACOS model included the predictors of no inpatient LHC, PEA initial rhythm, metastatic malignancy, and high-risk malignancy (leukemia, pancreas, liver, biliary, and lung). Cost-benefit analysis indicated 292 racial minorities and $2.16 billion could be saved annually by reducing racial disparities in LHC. Ethical analysis indicated the convergent consensus across diverse belief systems that such disparities should be eliminated to optimize just and equitable outcomes. Conclusions: This AI-guided empirical and ethical analysis provides a novel demonstration of LHC mortality reductions in cardio-oncology cardiac arrest and related disparities, along with an innovative predictive model that can be integrated within the digital ecosystem of modern healthcare systems to improve equitable clinical and public health outcomes.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3