Anti-Adherence and Antimicrobial Activities of Silver Nanoparticles against Serotypes C and K of Streptococcus mutans on Orthodontic Appliances

Author:

Nafarrate-Valdez Rosa1,Martínez-Martínez Rita2,Zaragoza-Contreras Erasto3ORCID,Áyala-Herrera José4ORCID,Domínguez-Pérez Rubén5ORCID,Reyes-López Simón6ORCID,Donohue-Cornejo Alejandro7,Cuevas-González Juan7ORCID,Loyola-Rodríguez Juan8ORCID,Espinosa-Cristóbal León7ORCID

Affiliation:

1. Speciality Program in Orthodontics, Department of Dentistry, Biomedical Science Institute, Autonomous University of Ciudad Juarez (UACJ), Envolvente del PRONAF and Estocolmo Avenues, Juarez City 32310, Mexico

2. Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, Universitary Campus, San Luis Potosí 78290, Mexico

3. Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico

4. School of Dentistry, Universidad De La Salle Bajío, Universidad Avenue, Lomas del Campestre, Guanajuato 37150, Mexico

5. Laboratory of Multidisciplinary Dental Research, Faculty of Medicine, Autonomous University of Queretaro, Clavel Street, Prados de La Capilla, Santiago de Querétaro 76176, Mexico

6. Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico

7. Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico

8. Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Universitaria, Culiacán 80013, Mexico

Abstract

Background and Objectives: Streptococcus mutans (S. mutans) is the main microorganism associated with the presence of dental caries and specific serotypes of this bacteria have been related to several systemic diseases limiting general health. In orthodontics, white spot lesions (WSL), represent a great challenge for clinicians due to the great fluctuation of their prevalence and incidence during conventional orthodontic treatments. Although silver nanoparticles (AgNP) have been demonstrated to have great antimicrobial properties in several microorganisms, including S. mutans bacteria, there is no available information about anti adherence and antimicrobial properties of AgNP exposed to two of the most relevant serotypes of S. mutans adhered on orthodontic materials used for conventional therapeutics. The objective of this study was to determine anti-adherence and antimicrobial levels of AgNP against serotypes c and k of S. mutans on conventional orthodontic appliances. Materials and Methods: An AgNP solution was prepared and characterized using dispersion light scattering (DLS) and transmission electron microscopy (TEM). Antimicrobial and anti-adherence activities of AgNP were determined using minimal inhibitory concentrations (MIC) and bacterial adherence testing against serotypes c and k of S. mutans clinically isolated and confirmed by PCR assay. Results: The prepared AgNP had spherical shapes with a good size distribution (29.3 ± 0.7 nm) with negative and well-defined electrical charges (−36.5 ± 5.7 mV). AgNP had good bacterial growth (55.7 ± 19.3 µg/mL for serotype c, and 111.4 ± 38.6 µg/mL for serotype k) and adherence inhibitions for all bacterial strains and orthodontic wires (p < 0.05). The serotype k showed statistically the highest microbial adherence (p < 0.05). The SS wires promoted more bacterial adhesion (149.0 ± 253.6 UFC/mL × 104) than CuNiTi (3.3 ± 6.0 UFC/mL × 104) and NiTi (101.1 ± 108.5 UFC/mL × 104) arches. SEM analysis suggests CuNiTi wires demonstrated better topographical conditions for bacterial adherence while AFM evaluation determined cell wall irregularities in bacterial cells exposed to AgNP. Conclusions: This study suggests the widespread use of AgNP as a potential anti-adherent and antimicrobial agent for the prevention of WSL during conventional orthodontic therapies and, collaterally, other systemic diseases.

Funder

National Council of Science and Technology

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3