Assessment of Therapeutic Responses Using a Deep Neural Network Based on 18F-FDG PET and Blood Inflammatory Markers in Pyogenic Vertebral Osteomyelitis

Author:

Shin Hyunkwang,Kong Eunjung,Yu Dongwoo,Choi Gyu SangORCID,Jeon IkchanORCID

Abstract

Background and objectives: This study investigated the usefulness of deep neural network (DNN) models based on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and blood inflammatory markers to assess the therapeutic response in pyogenic vertebral osteomyelitis (PVO). Materials and Methods: This was a retrospective study with prospectively collected data. Seventy-four patients diagnosed with PVO underwent clinical assessment for therapeutic responses based on clinical features during antibiotic therapy. The decisions of the clinical assessment were confirmed as ‘Cured’ or ‘Non-cured’. FDG-PETs were conducted concomitantly regardless of the decision at each clinical assessment. We developed DNN models depending on the use of attributes, including C-reactive protein (CRP), erythrocyte sedimentation ratio (ESR), and maximum standardized FDG uptake values of PVO lesions (SUVmax), and we compared their performances to predict PVO remission. Results: The 126 decisions (80 ‘Cured’ and 46 ‘Non-cured’ patients) were randomly assigned with training and test sets (7:3). We trained DNN models using a training set and evaluated their performances for a test set. DNN model 1 had an accuracy of 76.3% and an area under the receiver operating characteristic curve (AUC) of 0.768 [95% confidence interval, 0.625–0.910] using CRP and ESR, and these values were 79% and 0.804 [0.674–0.933] for DNN model 2 using ESR and SUVmax, 86.8% and 0.851 [0.726–0.976] for DNN model 3 using CRP and SUVmax, and 89.5% and 0.902 [0.804–0.999] for DNN model 4 using ESR, CRP, and SUVmax, respectively. Conclusions: The DNN models using SUVmax showed better performances when predicting the remission of PVO compared to CRP and ESR. The best performance was obtained in the DNN model using all attributes, including CRP, ESR, and SUVmax, which may be helpful for predicting the accurate remission of PVO.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3