Differential Effects of Intra-Abdominal Hypertension and ARDS on Respiratory Mechanics in a Porcine Model

Author:

Seybold Benjamin1ORCID,Deutsch Anna M.12,Deutsch Barbara Luise13,Simeliunas Emilis14,Weigand Markus A.15,Fiedler-Kalenka Mascha O.15,Kalenka Armin16ORCID

Affiliation:

1. Department of Anesthesiology, Medical Faculty, Heidelberg University Hospital, University Heidelberg, 69120 Heidelberg, Germany

2. Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Vivantes Klinikum im Friedrichshain, 10249 Berlin, Germany

3. Department of Anesthesiology, Intensive Care and Emergency Medicine, Asklepios Klinik Wandsbek, 22043 Hamburg, Germany

4. Department of Anesthesiology and Intensive Care Medicine, Bürgerspital Solothurn, 4500 Solothurn, Switzerland

5. German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), 69120 Heidelberg, Germany

6. Hospital Bergstrasse, 64646 Heppenheim, Germany

Abstract

Background and Objectives: Intra-abdominal hypertension (IAH) and acute respiratory distress syndrome (ARDS) are common concerns in intensive care unit patients with acute respiratory failure (ARF). Although both conditions lead to impairment of global respiratory parameters, their underlying mechanisms differ substantially. Therefore, a separate assessment of the different respiratory compartments should reveal differences in respiratory mechanics. Materials and Methods: We prospectively investigated alterations in lung and chest wall mechanics in 18 mechanically ventilated pigs exposed to varying levels of intra-abdominal pressures (IAP) and ARDS. The animals were divided into three groups: group A (IAP 10 mmHg, no ARDS), B (IAP 20 mmHg, no ARDS), and C (IAP 10 mmHg, with ARDS). Following induction of IAP (by inflating an intra-abdominal balloon) and ARDS (by saline lung lavage and injurious ventilation), respiratory mechanics were monitored for six hours. Statistical analysis was performed using one-way ANOVA to compare the alterations within each group. Results: After six hours of ventilation, end-expiratory lung volume (EELV) decreased across all groups, while airway and thoracic pressures increased. Significant differences were noted between group (B) and (C) regarding alterations in transpulmonary pressure (TPP) (2.7 ± 0.6 vs. 11.3 ± 2.1 cmH2O, p < 0.001), elastance of the lung (EL) (8.9 ± 1.9 vs. 29.9 ± 5.9 cmH2O/mL, p = 0.003), and elastance of the chest wall (ECW) (32.8 ± 3.2 vs. 4.4 ± 1.8 cmH2O/mL, p < 0.001). However, global respiratory parameters such as EELV/kg bodyweight (−6.1 ± 1.3 vs. −11.0 ± 2.5 mL/kg), driving pressure (12.5 ± 0.9 vs. 13.2 ± 2.3 cmH2O), and compliance of the respiratory system (−21.7 ± 2.8 vs. −19.5 ± 3.4 mL/cmH2O) did not show significant differences among the groups. Conclusions: Separate measurements of lung and chest wall mechanics in pigs with IAH or ARDS reveals significant differences in TPP, EL, and ECW, whereas global respiratory parameters do not differ significantly. Therefore, assessing the compartments of the respiratory system separately could aid in identifying the underlying cause of ARF.

Funder

University of Heidelberg

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3