The GSTO2 (rs156697) Polymorphism Modifies Diabetic Nephropathy Risk

Author:

Pavlovic Dragana,Ristic Sinisa,Djukanovic LjubicaORCID,Matic Marija,Kovacevic Marijana,Pljesa-Ercegovac MarijaORCID,Hadzi-Djokic Jovan,Savic-Radojevic AnaORCID,Djukic TatjanaORCID

Abstract

Background and Objectives: In the development of type 2 diabetes mellitus (T2DM) and its complications, genetic and environmental factors play important roles. Diabetic nephropathy (DN), one of the major microangiopathic chronic diabetic complications, is associated with an increased risk of major cardiovascular events and all-cause mortality. The present study was designed to investigate the possible modifying effect of glutathione transferase polymorphisms (GSTM1, GSTT1, GSTP1 rs1138272/rs1695, GSTO1 rs4925 and GSTO2 rs156697) in the susceptibility to T2DM and diabetic nephropathy. Materials and Methods: GSTM1 and GSTT1 deletion polymorphisms were determined by multiplex PCR, whereas GSTO1, GSTO2, and GSTP1 polymorphisms were determined by the real-time PCR in 160 T2DM patients and 248 age- and gender-matched controls. Advanced glycation end products (AGEs) were measured by ELISA. Results: Among six investigated GST polymorphisms, a significant association between the GST genotypes and susceptibility for development of diabetes mellitus was found for the GSTM1, GSTT1, GSTP1 (rs1138272) and GSTO1 polymorphisms. When the GST genotypes’ distribution in diabetes patients was assessed in the subgroups with and without diabetic nephropathy, a significant association was found only for the GSTO2 rs156697 polymorphism. Diabetic patients, carriers of the GSTM1 null, GSTT1 null and variant GSTO1*AA genotypes, had significantly increased levels of AGEs in comparison with carriers of the GSTM1 active, GSTT1 active and referent GSTO1*CC genotypes (p < 0.001, p < 0.001, p = 0.004, respectively). Conclusions: The present study supports the hypothesis that GST polymorphisms modulate the risk of diabetes and diabetic nephropathy and influence the AGEs concentration, suggesting the potential regulatory role of these enzymes in redox homeostasis disturbances.

Funder

Ministry of Education, Science and Technological Development of Serbia

Serbian Academy of Science and Arts

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3