Monoamine Oxidase (MAO) Is Expressed at the Level of Mitral Valve with Severe Regurgitation in Hypertrophic Obstructive Cardiomyopathy: A Case Report

Author:

Lascu Ana,Șoșdean RalucaORCID,Ionică Loredana Nicoleta,Pescariu Alexandru S.ORCID,Petrescu Lucian,Ionac Adina,Luca Constantin T.,Sturza Adrian,Feier Horea B.ORCID

Abstract

Hypertrophic obstructive cardiomyopathy (HOCM) is one of the most common hereditary heart diseases. The severely hypertrophied interventricular septum combined with the systolic anterior movement (SAM) of the mitral valve (MV) frequently cause a significant pressure gradient in the left ventricular outflow tract associated with varying degrees of mitral regurgitation (MR). We present the case of a 64-year-old female patient who was diagnosed with HOCM two years ago and was admitted to the Institute of Cardiovascular Disease with exertion dyspnea and fatigue. Transthoracic echocardiography revealed concentric, asymmetrical left ventricular hypertrophy, an elongated anterior mitral leaflet (AML) and a significant SAM causing severe regurgitation, with indication for valvular replacement Monoamine oxidase (MAO), a mitochondrial enzyme, with 2 isoforms, MAO-A and B, has emerged as an important source of reactive oxygen species (ROS) in the cardiovascular system, but literature data on its expression in valvular tissue is scarce. Therefore, we assessed MAO-A and B gene (qPCR) and protein (immune fluorescence) expression as well as ROS production (spectrophotometry and confocal microscopy) and in the explanted MV harvested during replacement surgery. MAO expression and ROS production (assessed by both methods) were further augmented following ex vivo incubation with angiotensin II, an effect that was reversed in the presence of either MAO-A (clorgyline) or B (selegiline) inhibitor, respectively. In conclusion, MAO isoforms are expressed at the level of severely impaired mitral valve in the setting of HOCM and can be induced in conditions that mimic the activation of renin-angiotensin-aldosterone system. The observation that the enzyme can be modulated by MAO inhibitors warrants further investigation in a patient cohort.

Funder

university internal funds

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3