A Machine Learning-Based Investigation of Gender-Specific Prognosis of Lung Cancers

Author:

Wang Yueying,Liu ShuaiORCID,Wang Zhao,Fan Yusi,Huang Jingxuan,Huang Lan,Li Zhijun,Li Xinwei,Jin Mengdi,Yu QiongORCID,Zhou FengfengORCID

Abstract

Background and Objective: Primary lung cancer is a lethal and rapidly-developing cancer type and is one of the most leading causes of cancer deaths. Materials and Methods: Statistical methods such as Cox regression are usually used to detect the prognosis factors of a disease. This study investigated survival prediction using machine learning algorithms. The clinical data of 28,458 patients with primary lung cancers were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Results: This study indicated that the survival rate of women with primary lung cancer was often higher than that of men (p < 0.001). Seven popular machine learning algorithms were utilized to evaluate one-year, three-year, and five-year survival prediction The two classifiers extreme gradient boosting (XGB) and logistic regression (LR) achieved the best prediction accuracies. The importance variable of the trained XGB models suggested that surgical removal (feature “Surgery”) made the largest contribution to the one-year survival prediction models, while the metastatic status (feature “N” stage) of the regional lymph nodes was the most important contributor to three-year and five-year survival prediction. The female patients’ three-year prognosis model achieved a prediction accuracy of 0.8297 on the independent future samples, while the male model only achieved the accuracy 0.7329. Conclusions: This data suggested that male patients may have more complicated factors in lung cancer than females, and it is necessary to develop gender-specific diagnosis and prognosis models.

Funder

Jilin Provincial Key Laboratory of Big Data Intelligent Computing

Education Department of Jilin Province

Jilin University

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3