Abstract
The challenging task of generating a synthetic time series at finer temporal scales than the observed data, embeds the reconstruction of a number of essential statistical quantities at the desirable (i.e., lower) scale of interest. This paper introduces a parsimonious and general framework for the downscaling of statistical quantities based solely on available information at coarser time scales. The methodology is based on three key elements: (a) the analysis of statistics’ behaviour across multiple temporal scales; (b) the use of parametric functions to model this behaviour; and (c) the exploitation of extrapolation capabilities of the functions to downscale the associated statistical quantities at finer scales. Herein, we demonstrate the methodology using residential water demand records and focus on the downscaling of the following key quantities: variance, L-variation, L-skewness and probability of zero value (no demand; intermittency), which are typically used to parameterise a stochastic simulation model. Specifically, we downscale the above statistics down to a 1 min scale, assuming two scenarios of initial data resolution, i.e., 5 and 10 min. The evaluation of the methodology on several cases indicates that the four statistics can be well reconstructed. Going one step further, we place the downscaling methodology in a more integrated modelling framework for a cost-effective enhancement of fine-resolution records with synthetic ones, embracing the current limited availability of fine-resolution water demand measurements.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献