Author:
Pouraria Hassan,Park Ki-Heum,Seo Yutaek
Abstract
Formation of a dispersed oil—water flow pattern is a common occurrence in flow lines and pipelines. The capability of predicting the size of droplets, as well as the distribution of dispersed phase volume fraction is of utmost importance for proper design of such systems. The present study aims at modelling dispersed water in oil flows in a horizontal pipe by employing a multi-fluid Eulerian approach along with the population balance model. To this end, momentum and continuity equations are solved for oil and water phases, and the coupling between the phases is achieved by considering the drag, lift, turbulent dispersion, and virtual mass forces. Turbulent effects are modelled by employing the standard k-ε model. Furthermore, a population balance model, based on the method of class, along with the breakup and coalescence kernels is adopted for modelling the droplet size distribution. The obtained numerical results are compared to the experimental data in literature for either the in situ Sauter mean diameter or water volume fraction. A comparison among the obtained numerical results and the published experimental data shows a reasonable agreement.
Funder
National Research Foundation of Korea
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献