Numerical Modelling of Dispersed Water in Oil Flows Using Eulerian-Eulerian Approach and Population Balance Model

Author:

Pouraria Hassan,Park Ki-Heum,Seo Yutaek

Abstract

Formation of a dispersed oil—water flow pattern is a common occurrence in flow lines and pipelines. The capability of predicting the size of droplets, as well as the distribution of dispersed phase volume fraction is of utmost importance for proper design of such systems. The present study aims at modelling dispersed water in oil flows in a horizontal pipe by employing a multi-fluid Eulerian approach along with the population balance model. To this end, momentum and continuity equations are solved for oil and water phases, and the coupling between the phases is achieved by considering the drag, lift, turbulent dispersion, and virtual mass forces. Turbulent effects are modelled by employing the standard k-ε model. Furthermore, a population balance model, based on the method of class, along with the breakup and coalescence kernels is adopted for modelling the droplet size distribution. The obtained numerical results are compared to the experimental data in literature for either the in situ Sauter mean diameter or water volume fraction. A comparison among the obtained numerical results and the published experimental data shows a reasonable agreement.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3