Abstract
Biodiesel is a promising renewable energy option that significantly reduces the emission of greenhouse gases and other toxic byproducts. However, a major challenge in the industrial scale production of biodiesel is the desired product purity. To this end, reactive distillation (RD) processes, which involve simultaneous removal of the byproduct during the transesterification reaction, can drive the equilibrium towards high product yield. In the present study, we first optimized the heat exchange network (HEN) for a high purity RD process leading to a 34% reduction in the overall energy consumption. Further, a robust control scheme is proposed to mitigate any feed disturbance in the process that may compromise the product purity. Three rigorous case studies are performed to investigate the effect of composition control in the cascade with the temperature control of the product composition. The cascade control scheme effectively countered the disturbances and maintained the fatty acid mono-alkyl ester (FAME) purity.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献