Effect of Surface Modification with Different Acids on the Functional Groups of AF 5 Catalyst and Its Catalytic Effect on the Atmospheric Leaching of Enargite

Author:

Jahromi ,Ghahreman ORCID

Abstract

Carbon-based catalysts can assist the oxidative leaching of sulfide minerals. Recently, we presented that AF 5 Lewatit® is among the catalysts with superior enargite oxidation capacity and capability to collect elemental sulfur on its surface. Herein, the effect of acid pre-treatment of the AF 5 catalyst was studied on the AF 5 surface, to further enhance the catalytic properties of AF 5. The AF 5 catalyst was pretreated by hydrochloric acid, nitric acid and sulfuric acid. The results showed that the acid treatment drastically changes the surface properties of AF 5. For instance, the concentration of quinone-like functional groups, which are ascribed to the catalytic properties of AF 5, is 45.4% in the sulfuric acid pre-treatment AF 5 and only 29.8% in the hydrochloric acid-treated AF 5. Based on the C 1s X-ray photoelectron spectroscopy (XPS) results the oxygenated carbon is 30.6% in the sulfuric acid-treated AF 5, 29.2% in the nitric acid-treated AF 5 and 28.3% in the hydrochloric acid-treated AF 5. The nitric acid pre-treated AF 5 resulted in the highest copper recovery during the oxidative enargite leaching process, recovering 98.8% of the copper. The sulfuric acid-treated AF 5 recovered 97.1% of the enargite copper into the leach solution. Among different leaching media and pre-treatment the lowest copper recovery was achieved with the HCl pre-treated AF 5 which was 88.6%. The pre-treatment of AF 5 with acids also had modified its elemental sulfur adsorption capacity, where the sulfur adsorption on AF 5 was increased from 30.9% for the HCl treated AF 5 to 51.1% for the sulfuric acid-treated AF 5.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3