Predictive Approach to the Phase Behavior of Polymer–Water–Surfactant–Electrolyte Systems Using a Pseudosolvent Concept

Author:

Sheu Ji-Zen1,Nagarajan Ramanathan12

Affiliation:

1. Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

2. US Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA

Abstract

A predictive approach to the phase behavior of four-component polymer–water–surfactant–electrolyte systems is formulated by viewing the four-component system as a binary polymer–pseudosolvent system, with the pseudosolvent representing water, surfactant, and the electrolyte. The phase stability of this binary system is examined using the framework of the lattice fluid model of Sanchez and Lacombe. In the lattice fluid model, a pure component is represented by three equation-of-state parameters: the hard-core volume of a lattice site (v*), the number of lattice sites occupied by the component (r), and its characteristic energy (ε*). We introduce the extra-thermodynamic postulate that r and v* for the pseudosolvent are the same as for water and all surfactant–electrolyte composition-dependent characteristics of the pseudosolvent can be represented solely through its characteristic energy parameter. The key implication of the postulate is that the phase behavior of polymer–pseudosolvent systems will be identical for all pseudosolvents with equal values of characteristic energy, despite their varying real compositions. Based on the pseudosolvent model, illustrative phase diagrams have been computed for several four-component systems containing alkyl sulfonate/sulfate surfactants, electrolytes, and anionic or nonionic polymers. The pseudosolvent model is shown to describe all important trends in experimentally observed phase behavior pertaining to polymer and surfactant molecular characteristics. Most importantly, the pseudosolvent model allows one to construct a priori phase diagrams for any polymer–surfactant–electrolyte system, knowing just one experimental composition data for a system at the phase boundary, using available thermodynamic data on surfactants and electrolytes and without requiring any information on the polymer.

Publisher

MDPI AG

Reference43 articles.

1. Surfactant-polymer interactions;Hansson;Curr. Opin. Colloid Interface Sci.,1996

2. Shah, D.O., and Schechter, R.S. (1977). Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press.

3. Surfactant–Polymer Flooding: Influence of the Injection Scheme;Druetta;Energy Fuels,2018

4. Druetta, P., and Picchioni, F. (2020). Surfactant-Polymer Interactions in a Combined Enhanced Oil Recovery Flooding. Energies, 13.

5. Polymer Surfactant Interactions in Oil Enhanced Recovery Processes;Hamouma;Energy Fuels,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3