H2O/D2O Contrast Variation for Ultra-Small-Angle Neutron Scattering to Minimize Multiple Scattering Effects of Colloidal Particle Suspensions

Author:

Otsuki Akira,de Campo Liliana,Garvey Christopher,Rehm Christine

Abstract

This study investigated the use of solvent contrast (H2O/D2O ratio) as a means to optimize the ultra-small-angle neutron scattering (USANS) signal. By optimizing the signal, it was possible to reduce the undesirable effects of coherent multiple scattering while still maintaining a measurable scattered intensity. This result will further enable the use of USANS as a probe of the interactions between colloidal particles and their structures within concentrated suspensions as well as particle dispersion/aggregation. As a model system, we prepared silica colloidal particle suspensions at different solid concentrations. USANS curves were measured using the classical Bonse–Hart double crystal diffractometer while varying the scattering length density of the aqueous phase, thus varying the contrast to the silica particles. As a means of assessing the impact of multiple scattering effects on different q-values, we analyzed the scattered intensity at different contrasts at three different q values. The data were then used to determine the match point of the silica particle suspensions from the expected square root dependence of the scattered intensity with solvent composition, to analyze any differences associated with the solid concentration change, and to determine the optimum H2O/D2O ratio in terms of high transmission (TSAS > 80%) and high enough scattering intensity associated with the contrast of the system. Through this investigation series, we confirmed that adjusting the contrast of the solvent (H2O/D2O) is a good methodology to reduce multiple scattering while maintaining a strong enough scattering signal from a concentrated suspension of silica particles for both USANS and rheometric USANS (rheo-USANS) experiments.

Funder

Australian Nuclear Science and Technology Organisation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3