Comparison of Bubble Size Distributions Inferred from Acoustic, Optical Visualisation, and Laser Diffraction

Author:

Desai Pratik DORCID,Ng Woon Choon,Hines Michael J,Riaz Yassir,Tesar Vaclav,Zimmerman William BORCID

Abstract

Bubble measurement has been widely discussed in the literature and comparison studies have been widely performed to validate the results obtained for various forms of bubble size inferences. This paper explores three methods used to obtain a bubble size distribution—optical detection, laser diffraction and acoustic inferences—for a bubble cloud. Each of these methods has advantages and disadvantages due to their intrinsic inference methodology or design flaws due to lack of specificity in measurement. It is clearly demonstrated that seeing bubbles and hearing them are substantially and quantitatively different. The main hypothesis being tested is that for a bubble cloud, acoustic methods are able to detect smaller bubbles compared to the other techniques, as acoustic measurements depend on an intrinsic bubble property, whereas photonics and optical methods are unable to “see” a smaller bubble that is behind a larger bubble. Acoustic methods provide a real-time size distribution for a bubble cloud, whereas for other techniques, appropriate adjustments or compromises must be made in order to arrive at robust data. Acoustic bubble spectrometry consistently records smaller bubbles that were not detected by the other techniques. The difference is largest for acoustic methods and optical methods, with size differences ranging from 5–79% in average bubble size. Differences in size between laser diffraction and optical methods ranged from 5–68%. The differences between laser diffraction and acoustic methods are less, and range between 0% (i.e., in agreement) up to 49%. There is a wider difference observed between the optical method, laser diffraction and acoustic methods whilst good agreement between laser diffraction and acoustic methods. The significant disagreement between laser diffraction and acoustic method (35% and 49%) demonstrates the hypothesis, as there is a higher proportion of smaller bubbles in these measurements (i.e., the smaller bubbles ‘hide’ during measurement via laser diffraction). This study, which shows that acoustic bubble spectrometry is able to detect smaller bubbles than laser diffraction and optical techniques. This is supported by heat and mass transfer studies that show enhanced performance due to increased interfacial area of microbubbles, compared to fine bubbles.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

Reference65 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3