Effect of Surfactant Dynamics on Flow Patterns Inside Drops Moving in Rectangular Microfluidic Channels

Author:

Kovalchuk Nina M.ORCID,Simmons Mark J. H.

Abstract

Drops contained in an immiscible liquid phase are attractive as microreactors, enabling sound statistical analysis of reactions performed on ensembles of samples in a microfluidic device. Many applications have specific requirements for the values of local shear stress inside the drops and, thus, knowledge of the flow field is required. This is complicated in commonly used rectangular channels by the flow of the continuous phase in the corners, which also affects the flow inside the drops. In addition, a number of chemical species are present inside the drops, of which some may be surface-active. This work presents a novel experimental study of the flow fields of drops moving in a rectangular microfluidic channel when a surfactant is added to the dispersed phase. Four surfactants with different surface activities are used. Flow fields are measured using Ghost Particle Velocimetry, carried out at different channel depths to account for the 3-D flow structure. It is shown that the effect of the surfactant depends on the characteristic adsorption time. For fast-equilibrating surfactants with a characteristic time scale of adsorption that is much smaller than the characteristic time of surface deformation, this effect is related only to the decrease in interfacial tension, and can be accounted for by the change in capillary number. For slowly equilibrating surfactants, Marangoni stresses accelerate the corner flow, which changes the flow patterns inside the drop considerably.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3