Interplay of Interfacial and Rheological Properties on Drainage Reduction in CO2 Foam Stabilised by Surfactant/Nanoparticle Mixtures in Brine

Author:

de Azevedo Beatriz Ribeiro SouzaORCID,Alvarenga Bruno GiordanoORCID,Percebom Ana MariaORCID,Pérez-Gramatges AuroraORCID

Abstract

Although nanoparticles (NPs) are known to increase foam stability, foam stabilisation is not observed in all surfactant/NP combinations. The present study evaluates the stability of CO2 foams containing surfactant/NP mixtures with attractive or repulsive electrostatic interactions at the low pH imposed by CO2 in the presence of a high-salinity brine. Three ionic surfactants and two oxide NPs (SiO2 and Al2O3) were used in combinations of similar or opposite charges. Surface tension, viscosity, ζ-potential and hydrodynamic size experiments allowed the analysis of CO2 foam stability based on the impact of surfactant–NP interactions on bulk and interfacial properties. All oppositely charged systems improved the foam half-life; however, a higher NP concentration was required to observe a significant effect when more efficient surfactants were present. Both bulk viscosity and rigidity of the interfacial films drastically increased in these systems, reducing foam drainage. The mixture of SiO2 with a zwitterionic surfactant showed the greatest increase in CO2 foam stability owing to the synergy of these effects, mediated by attractive interactions. This study showed that the use of NPs should be tailored to the surfactant of choice to achieve an interplay of interfacial and rheological properties able to reduce foam drainage in applications involving CO2 foam in brine.

Funder

Brazilian National Agency for Petroleum, Natural Gas and Biofuels

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3