Kinetics of Spreading over Porous Substrates

Author:

Johnson Phillip,Trybala AnnaORCID,Starov Victor

Abstract

The spreading of small liquid drops over thin and thick porous layers (dry or saturated with the same liquid) is discussed in the case of both complete wetting (silicone oils of different viscosities over nitrocellulose membranes and blood over a filter paper) and partial wetting (aqueous SDS (Sodium dodecyl sulfate) solutions of different concentrations and blood over partially wetted substrates). Filter paper and nitrocellulose membranes of different porosity and different average pore size were used as a model of thin porous layers, sponges, glass and metal filters were used as a model of thick porous substrates. Spreading of both Newtonian and non-Newtonian liquid are considered below. In the case of complete wetting, two spreading regimes were found (i) the fast spreading regime, when imbibition is not important and (ii) the second slow regime when imbibition dominates. As a result of these two competing processes, the radius of the drop goes through a maximum value over time. A system of two differential equations was derived in the case of complete wetting for both Newtonian and non-Newtonian liquids to describe the evolution with time of radii of both the drop base and the wetted region inside the porous layer. The deduced system of differential equations does not include any fitting parameter. Experiments were carried out by the spreading of silicone oil drops over various dry microfiltration membranes (permeable in both normal and tangential directions) and blood over dry filter paper. The time evolution of the radii of both the drop base and the wetted region inside the porous layer were monitored. All experimental data fell on two universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer on dimensionless time. The predicted theoretical relationships are two universal curves accounting quite satisfactorily for the experimental data. According to the theory prediction, (i) the dynamic contact angle dependence on the same dimensionless time as before should be a universal function and (ii) the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in the system under investigation in the case of complete wetting. These conclusions again are in good agreement with experimental observations in the case of complete wetting for both Newtonian and non-Newtonian liquids. Addition of surfactant to aqueous solutions, as expected, improve spreading over porous substrates and, in some cases, results in switching from partial to complete wetting. It was shown that for the spreading of surfactant solutions on thick porous substrates there is a minimum contact angle after which the droplet rapidly absorbs into the substrate. Unfortunately, a theory of spreading/imbibition over thick porous substrates is still to be developed. However, it was shown that the dimensionless time dependences of both contact angle and spreading radius of the droplet on thick porous material fall on to a universal curve in the case of complete wetting.

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

Reference45 articles.

1. An Introduction to Interfaces and colloids The Bridge to Nanoscience;Berg,2010

2. Wetting

3. Long-scale evolution of thin liquid films

4. Wetting: statics and dynamics

5. Spreading of liquid drops over dry surfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3