Investigation of Stability of CO2 Microbubbles—Colloidal Gas Aphrons for Enhanced Oil Recovery Using Definitive Screening Design

Author:

Nguyen Hai Le Nam,Sugai Yuichi,Sasaki Kyuro

Abstract

CO2 microbubbles have recently been used in enhanced oil recovery for blocking the high permeability zone in heterogeneous reservoirs. Microbubbles are colloidal gas aphrons stabilized by thick shells of polymer and surfactant. The stability of CO2 microbubbles plays an important role in improving the performance of enhanced oil recovery. In this study, a new class of design of experiment (DOE)—definitive screening design (DSD) was employed to investigate the effect of five quantitative parameters: xanthan gum polymer concentration, sodium dodecyl sulfate surfactant concentration, salinity, stirring time, and stirring rate. This is a three-level design that required only 11 experimental runs. The results suggest that DSD successfully evaluated how various parameters contribute to CO2 microbubble stability. The definitive screening design revealed a polynomial regression model has ability to estimate the main effect factor, two-factor interactions and pure-quadratic effect of factors with high determination coefficients for its smaller number of experiments compared to traditional design of experiment approach. The experimental results showed that the stability depend primarily on xanthan gum polymer concentration. It was also found that the stability of CO2 microbubbles increases at a higher sodium dodecyl sulfate surfactant concentration and stirring rate, but decreases with increasing salinity. In addition, several interactions are presented to be significant including the polymer–salinity interaction, surfactant–salinity interaction and stirring rate–salinity interaction.

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3