Dispersions of Metal Oxides in the Presence of Anionic Surfactants

Author:

Ruchomski Leszek,Mączka Edward,Kosmulski MarekORCID

Abstract

We studied the behavior of dilute dispersions of nanoparticles of hematite, alumina, and titania in the presence of various concentrations of very pure sodium dodecyl-, tetradecyl-, and hexadecylsulfate. The concentrations studied were up to critical micelle concentration (CMC) for sodium dodecylsulfate, and up to the solubility limit in case of sodium tetradecyl- and hexadecylsulfate. The dispersions were adjusted to different pH (3–11), and 10−3 M NaCl was used as the supporting electrolyte. The solid-to-liquid ratio was strictly controlled in all dispersions, and the behavior of fresh dispersions was compared with dispersions aged for up to eight days. The presence of very low concentrations of ionic surfactants had rather insignificant effects on the ζ potentials of the particles. At sufficient concentrations of ionic surfactants the isoelectric point (IEP) of metal oxides shifted to low pH, and the long-chain surfactants were more efficient in shifting the IEP than their shorter-chain analogues. Once the surfactant concentration reached a critical value, the ζ potentials of the particles reached a pH-independent negative value, which did not change on further increase in the surfactant concentration and/or aging of the dispersion. This critical concentration increases with the solid-to-liquid ratio, and it is rather consistent (for certain oxides and certain surfactants) when it is expressed as the amount of surfactant per unit of surface area. Surprisingly, the surfactant-stabilized dispersions always showed a substantial degree of aggregation; that is, the particle size observed in dispersions by dynamic light scattering was higher than the size of particles observed in dry powders by electron microscopy. Apparently, in spite of relatively high ζ potentials (about 60 mV in absolute value), the surfactant-stabilized dispersions consist of aggregates rather than of primary particles, and in certain dispersions the high concentration of surfactant seems to induce aggregation rather than prevent it.

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3