Experimental Evaluation of Foam Diversion for EOR in Heterogeneous Carbonate Rocks

Author:

Taha Motaz,Patil Pramod,Nguyen Quoc

Abstract

Immiscible gas injection applied to heterogeneous carbonate reservoirs can be inefficient due to poor conformance control. Foam mobility control is proposed in this work as a solution for gas conformance issues in such reservoirs. A unique experimental program was developed to evaluate alkyl polyglucoside (APG) stabilized foam for foaming ability, emulsion-forming tendency and resistance to oil. Dynamic methane foam behavior is systematically studied through single and dual injection core flooding experiments, simulating foam diversion during immiscible methane flooding in a layered reservoir with a significant layer permeability contrast. Results show a stable foam-oil system with no viscous emulsions at very high formation brine salinity (144,000 ppm total dissolved solids). Single-core floods for the high permeability layer (Unit-A) showed that foam viscosity of 27 cP could be achieved at 11% oil saturation (So). Under similar oil-wet condition, the low permeability zone (Unit-B) could generate foam of 21 cP at 18.9% So, indicating an increase in injected fluid mobility reduction with permeability. Dual-core injection experiments, which is designed to evaluate accurately fluid diversion capacity of such foams, reveals remarkable dynamic foam behaviors. While the water-wet condition indicates the scalability of foam behaviors (i.e., the ability of foam to control fluid mobility against the variation of rock permeability) between the single and composite core systems, the oil-wet condition confirms good foam resistance to residual oil that resulted in an increase in Unit B production from 46 to 82%, and 74 to 85% for Unit-A. Moreover, dual-core floods representing premature waterfloods (i.e., higher oil saturation) shows even more dramatic incremental oil recovery (44 to 81% in Unit-A and 17.5 to 71% in Unit-B), evidencing the ability of foam to self-viscosify with permeability variation at varying oil saturations.

Publisher

MDPI AG

Subject

Colloid and Surface Chemistry,Chemistry (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3