Photoluminescence Property of Eu3+ doped CaSiO3 Nano-phosphor with Controlled Grain Size

Author:

Niraula Boris,Rizal ConradORCID

Abstract

A series of Eu3+ doped CaSiO3/SiO2 nano-phosphor powder of controlled grain size, crystalline structure, and chemical composition were synthesized using the microemulsion technique. The morphology, size, and shape of the synthesized nanophosphorous powder were investigated using transmission electron microscopy and X-ray diffraction (XRD) analysis. XRD profiles of samples sintered over 600 °C, suggested phase shift from amorphous powder grain to more ordered polycrystalline powder of triclinic type wollastonite, CaSiO3, with preferred crystal phase orientation of (112) and tetragonal type cristobalites of SiO2. The grain size, crystallinity, and chemical composition of the host matrix, activator and sensitizer strongly affected both the absorption and emission bands of these samples. The amplitude of both the orange and red emission bands significantly increased with sintering temperature. The emission band is red-shifted with decreasing grain sizes. These bands displayed good sensitivity to ionic concentration of the Si4+, Ca2+, and Eu3+. With increasing Ca2+ ion concentration both the intensity of the red photoluminescence (PL) band increased and a concentration quenching observed. Increase in Si4+ ion concentration led to quenching in PL intensity of both the orange and red bands, whereas the amplitude of the blue-band slightly increased. With increasing Eu3+ ion concentration the red-band initially increased whereas it started decreasing at higher sample concentration. In the presence of Ca2+ ion as a sensitizer, the sample showed a remarkable PL property-including–about 100% photon conversion efficiency and a two-fold increase in excitation and emission photons.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3