Deep Reinforcement Learning for Edge Caching with Mobility Prediction in Vehicular Networks

Author:

Choi Yoonjeong1ORCID,Lim Yujin1ORCID

Affiliation:

1. Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Abstract

As vehicles are connected to the Internet, various services can be provided to users. However, if the requests of vehicle users are concentrated on the remote server, the transmission delay increases, and there is a high possibility that the delay constraint cannot be satisfied. To solve this problem, caching can be performed at a closer proximity to the user which in turn would reduce the latency by distributing requests. The road side unit (RSU) and vehicle can serve as caching nodes by providing storage space closer to users through a mobile edge computing (MEC) server and an on-board unit (OBU), respectively. In this paper, we propose a caching strategy for both RSUs and vehicles with the goal of maximizing the caching node throughput. The vehicles move at a greater speed; thus, if positions of the vehicles are predictable in advance, this helps to determine the location and type of content that has to be cached. By using the temporal and spatial characteristics of vehicles, we adopted a long short-term memory (LSTM) to predict the locations of the vehicles. To respond to time-varying content popularity, a deep deterministic policy gradient (DDPG) was used to determine the size of each piece of content to be stored in the caching nodes. Experiments in various environments have proven that the proposed algorithm performs better when compared to other caching methods in terms of the throughput of caching nodes, delay constraint satisfaction, and update cost.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3