Measurement of Water Vapor Condensation on Apple Surfaces during Controlled Atmosphere Storage

Author:

Linke Manfred1,Praeger Ulrike1,Neuwald Daniel A.2ORCID,Geyer Martin1ORCID

Affiliation:

1. Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany

2. Lake of Constance Research Centre for Fruit Cultivation (KOB), 88213 Ravensburg, Germany

Abstract

Apples are stored at temperatures close to 0 °C and high relative humidity (up to 95%) under controlled atmosphere conditions. Under these conditions, the cyclic operation of the refrigeration machine and the associated temperature fluctuations can lead to localized undershoots of the dew point on fruit surfaces. The primary question for the present study was to prove that such condensation processes can be measured under practical conditions during apple storage. Using the example of a measuring point in the upper apple layer of a large bin in the supply air area, this evidence was provided. Using two independent measuring methods, a wetness sensor attached to the apple surface and determination of climatic conditions near the fruit, the phases of condensation, namely active condensation and evaporation, were measured over three weeks as a function of the operating time of the cooling system components (refrigeration machine, fans, defrosting regime). The system for measurement and continuous data acquisition in the case of an airtight CA-storage room is presented and the influence of the operation of the cooling system components in relation to condensation phenomena was evaluated. Depending on the set point specifications for ventilation and defrost control, condensed water was present on the apple surface between 33.4% and 100% of the duration of the varying cooling/re-warming cycles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3