Deriving Multiple-Layer Information from a Motion-Sensing Mattress for Precision Care

Author:

Bai Dorothy1,Ho Mu-Chieh2,Mathunjwa Bhekumuzi M.2,Hsu Yeh-Liang2

Affiliation:

1. School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 110, Taiwan

2. Gerontechnology Research Center, Yuan Ze University, Taoyuan 320, Taiwan

Abstract

Bed is often the personal care unit in hospitals, nursing homes, and individuals’ homes. Rich care-related information can be derived from the sensing data from bed. Patient fall is a significant issue in hospitals, many of which are related to getting in and/or out of bed. To prevent bed falls, a motion-sensing mattress was developed for bed-exit detection. A machine learning algorithm deployed on the chip in the control box of the mattress identified the in-bed postures based on the on/off pressure pattern of 30 sensing areas to capture the users’ bed-exit intention. This study aimed to explore how sleep-related data derived from the on/off status of 30 sensing areas of this motion-sensing mattress can be used for multiple layers of precision care information, including wellbeing status on the dashboard and big data analysis for living pattern clustering. This study describes how multiple layers of personalized care-related information are further derived from the motion-sensing mattress, including real-time in-bed/off-bed status, daily records, sleep quality, prolonged pressure areas, and long-term living patterns. Twenty-four mattresses and the smart mattress care system (SMCS) were installed in a dementia nursing home in Taiwan for a field trial. Residents’ on-bed/off-bed data were collected for 12 weeks from August to October 2021. The SMCS was developed to display care-related information via an integrated dashboard as well as sending reminders to caregivers when detecting events such as bed exits and changes in patients’ sleep and living patterns. The ultimate goal is to support caregivers with precision care, reduce their care burden, and increase the quality of care. At the end of the field trial, we interviewed four caregivers for their subjective opinions about whether and how the SMCS helped their work. The caregivers’ main responses included that the SMCS helped caregivers notice the abnormal situation for people with dementia, communicate with family members of the residents, confirm medication adjustments, and whether the standard care procedure was appropriately conducted. Future studies are suggested to focus on integrated care strategy recommendations based on users’ personalized sleep-related data.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Continuous Quality Improvement. Fall Reduction and Injury Prevention Toolkit: Implementation on Two Medical-Surgical Units;Ambutas;MedSurg Nurs.,2017

2. Falls in hospital increase length of stay regardless of degree of harm;Dunne;J. Eval. Clin. Pract.,2014

3. Medical costs of fatal and nonfatal falls in older adults;Florence;J. Am. Geriatr. Soc.,2018

4. Low cost and batteryless sensor-enabled radio frequency identification tag based approaches to identify patient bed entry and exit posture transitions;Ranasinghe;Gait Posture,2014

5. Taiwan Joint Commission on Hospital Accreditation (2021). Taiwan Patient-Safety Reporting System: Annual Report 2020, Taiwan Joint Commission on Hospital Accreditation.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3