Simultaneous Correlative Interferometer Technique for Direction Finding of Signal Sources

Author:

Oh Minkyu1ORCID,Lee Young-Seok1ORCID,Lee In-Ki2ORCID,Jung Bang Chul1ORCID

Affiliation:

1. Department of Electronics Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

2. Satellite Communication Infra Research Section, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea

Abstract

In this paper, we propose a novel simultaneous Correlative Interferometer (CI) technique that elaborately estimates the Direction of Arrival (DOA) of multiple source signals incident on an antenna array. The basic idea of the proposed technique is that the antenna-array-based receiver compares the phase of the received signal with one of the candidates at each time sample and jointly exploits these multiple time samples to estimate the DOAs of multiple signal sources. The proposed simultaneous CI-based DOA estimation technique collectively utilizes multiple time-domain samples and can be regarded as a generalized version of the conventional CI algorithm for the case of multiple time-domain samples. We first thoroughly review the conventional CI algorithm to comprehensively explain the procedure of the direction-finding algorithm that adopts the phase information of received signals. We also discuss several technical issues of conventional CI-based DOA estimation techniques that are originally proposed for the case of a single time-domain sample. Then, we propose a simultaneous CI-based DOA estimation technique with multi-sample diversity as a novel solution for the case of multiple time-domain samples. We clearly compare the proposed simultaneous CI technique with the conventional CI technique and we compare the existing Multiple Signal Classification (MUSIC)-based DOA estimation technique with the conventional CI-based technique by using the DOA spectrum as well. To the best of our knowledge, the simultaneous CI-based DOA estimation technique that effectively utilizes the characteristics of multiple signal sources over multiple time-domain samples has not been reported in the literature. Through extensive computer simulations, we show that the proposed simultaneous CI technique significantly outperforms both the conventional CI technique in terms of DOA estimation even in harsh environments and with various antenna array structures. It is worth noting that the proposed simultaneous CI technique results in much better performance than the classical MUSIC algorithm, which is one of the most representative subspace-based DOA estimation techniques.

Funder

Intelligent Technology Development Program on Disaster Response and Emergency Management

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. A tutorial on terahertz-band localization for 6G communication systems;Chen;IEEE Commun. Surveys Tuts.,2022

2. 3GPP (2020, January 22). Study on NR Positioning Enhancements. Available online: https://www.3gpp.org/specifications.

3. IEEE (2023). IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks–Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4: Enhancements for Positioning, IEEE.

4. A coprime array-based technique for spoofing detection and DOA estimation in GNSS;Zhao;IEEE Sens. J.,2022

5. Efficient DOA estimation method for reconfigurable intelligent surfaces aided UAV swarm;Chen;IEEE Trans. Signal Process.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3