Dark-Channel Soft-Constrained and Object-Perception-Enhanced Deep Dehazing Networks Used for Road Inspection Images

Author:

Wu Honglin1,Gao Tong2ORCID,Ji Zhenming1,Song Mou1,Zhang Lianzhen1ORCID,Kong Dezhi2

Affiliation:

1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

2. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

Abstract

Haze seriously affects the visual quality of road inspection images and contaminates the discrimination of key road objects, which thus hinders the execution of road inspection work. The basic assumptions of the classical dark-channel prior are not suitable for road images containing light-colored lane lines and vehicles, while typical deep dehazing networks lack physical model interpretability, and they focus on global dehazing effects, neglecting the preservation of object features. For this reason, this paper proposes a Dark-Channel Soft-Constrained and Object-Perception-Enhanced Deep Dehazing Network (DCSC-OPE-Net) for the information recovery of road inspection images. The network is divided into two modules: a dark-channel soft-constrained dehazing module and a near-view object-perception-enhanced module. Unlike the traditional dark-channel algorithms that impose strong constraints on dark pixels, a dark-channel soft-constrained loss function is constructed to ensure that the features of light-colored vehicles and lane lines are effectively maintained. To avoid resolution loss due to patch-based dark-channel processing for image dehazing, a resolution enhancement module is used to strengthen the contrast of the dehazed image. To autonomously perceive and enhance key road features to support road inspection, edge enhancement loss combined with a transmission map is embedded into the network to autonomously discover near-view objects and enhance their key features. The experiments utilize public datasets and real road inspection datasets to validate the performance of the proposed DCSC-OPE-Net compared with typical networks using dehazing evaluation metrics and road object recognition metrics. The experimental results demonstrate that the proposed DCSC-OPE-Net can obtain the best dehazing performance, with an NIQE score of 4.5 and a BRISQUE score of 18.67, and obtain the best road object recognition results (i.e., 83.67%) among the comparison methods.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3