Affiliation:
1. Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Mexico City 07340, Mexico
2. TecNM-CENIDET, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca 62490, Mexico
Abstract
This paper is focused on the use of radio frequency identification (RFID) technology operating at 125 kHz in a communication layer for a network of mobile and static nodes in marine environments, with a specific focus on the Underwater Internet of Things (UIoT). The analysis is divided into two main sections: characterizing the penetration depth at different frequencies and evaluating the probabilities of data reception between antennas of static nodes and a terrestrial antenna considering the line of sight (LoS) between antennas. The results indicate that the use of RFID technology at 125 kHz allows for data reception with a penetration depth of 0.6116 dB/m, demonstrating its suitability for data communication in marine environments. In the second part of the analysis, we examine the probabilities of data reception between static-node antennas at different heights and a terrestrial antenna at a specific height. Wave samples recorded in Playa Sisal, Yucatan, Mexico, are used for this analysis. The findings show a maximum reception probability of 94.5% between static nodes with an antenna at a height of 0 m and a 100% data reception probability between a static node and the terrestrial antenna when the static-node antennas are optimally positioned at a height of 1 m above sea level. Overall, this paper provides valuable insights into the application of RFID technology in marine environments for the UIoT, considering the minimization of impacts on marine fauna. The results suggest that by adjusting the characteristics of the RFID system, the proposed architecture can be effectively implemented to expand the monitoring area, considering variables both underwater and on the surface of the marine environment.
Funder
Secretaria de Investigación y Posgrado-IPN
Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference28 articles.
1. Kalantar-Zadeh, K. (2013). Sensors: An Introductory Course, Springer Science & Business Media.
2. Introduction to IoT;Gokhale;Int. Adv. Res. J. Sci. Eng. Technol.,2018
3. Sensors: Smart vs. intelligent;Yurish;Sens. Transducers,2010
4. Nóbrega, L., Tavares, A., Cardoso, A., and Gonçalves, P. (2018, January 8–9). Animal monitoring based on IoT technologies. Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture IEEE, Tuscany, Italy.
5. An overview of the internet of underwater things;Domingo;J. Netw. Comput. Appl.,2012
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献