Spatial and Temporal Variability in Bioswale Infiltration Rate Observed during Full-Scale Infiltration Tests: Case Study in Riga Latvia

Author:

Kondratenko Jurijs1ORCID,Boogaard Floris C.23ORCID,Rubulis Jānis1ORCID,Maļinovskis Krišs4

Affiliation:

1. Water Systems and Biotechnology Institute, Riga Technical University, Ķīpsalas 6A, LV-1048 Riga, Latvia

2. Research Centre for Built Environment NoorderRuimte, Hanze University of Applied Sciences Groningen, Zernikeplein 7, P.O. Box 30030, 9747 AS Groningen, The Netherlands

3. Deltares, Daltonlaan 600, P.O. Box 85467, 3508 AL Utrecht, The Netherlands

4. Bonava Ltd., Brīvības 275, LV-1006 Riga, Latvia

Abstract

Urban nature-based solutions (NBSs) are widely implemented to collect, store, and infiltrate stormwater. This study addressed infiltration rate as a measure of the performance of bioretention solutions. Quick scan research was conducted, starting with mapping over 25 locations of implemented green infrastructure in Riga, Latvia. Basic information, such as location, characteristics, as well as photos and videos, has been uploaded to the open-source database ClimateScan. From this, eight bioswales installed in the period 2017–2022 were selected for hydraulic testing, measuring the infiltration capacity of bio-retention solutions. The results show a high temporal and spatial variation of infiltration rate for the bioswales, even those developed with similar designs: 0.1 to 7.7 m/d, mean 2.0 m/d, coefficient of variation 1.0. The infiltration capacity decreased after saturation: a 30% to 58% decrease in infiltration rate after refilling storage volume. The variation in infiltration rate as well as infiltration rate decrease on saturation is similar to other full-scale studies done internationally. The infiltration rate of most bioswales falls within the range specified by international guidelines, all swales empty within 48 h. Most bioswales empty several times within one day, questioning the effectiveness of water retention and water availability for dry periods. The results are of importance for stakeholders involved in the implementation of NBS and will be used to set up Latvian guidelines for design, construction, and maintenance.

Funder

Latvian State Environmental Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3