Simulating River/Lake–Groundwater Exchanges in Arid River Basins: An Improvement Constrained by Lake Surface Area Dynamics and Evapotranspiration

Author:

Vasilevskiy PeterORCID,Wang PingORCID,Pozdniakov SergeyORCID,Wang TianyeORCID,Zhang YichiORCID,Zhang Xuejing,Yu Jingjie

Abstract

Surface water–groundwater interactions in arid zones are characterized by water exchange processes in a complex system comprising intermittent streams/terminal lakes, shallow aquifers, riparian zone evapotranspiration, and groundwater withdrawal. Notable challenges arise when simulating such hydrological systems; for example, field observations are scarce, and hydrogeological parameters exhibit considerable spatial heterogeneity. To reduce the simulation uncertainties, in addition to groundwater head and river discharge measurements, we adopted remote sensing-based evapotranspiration data and lake area dynamics as known conditions to calibrate the model. We chose the Ejina Basin, located in the lower reaches of the Heihe River Basin in arid northwest China, as the study area to validate our modelling approach. The hydrological system of this basin is characterized by intensive, spatiotemporally variable surface water–groundwater interactions. The areas of the terminal lakes into which all river runoff flows vary significantly depending on the ratio between river runoff and lake evaporation. Simulation results with a monthly time step from 2000 to 2017 indicate that river leakage accounted for approximately 61% of the total river runoff. Our study shows that for areas where surface water and groundwater observations are sparse, combining remote sensing product data of surface water areas and evapotranspiration can effectively reduce the uncertainty in coupled surface water and groundwater simulations.

Funder

National Natural Science Foundation of China

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3