Abstract
The tightly coupled navigation system is commonly used in UAV products and land vehicles. It adopts the Kalman filter to combine raw satellite observations, including the pseudorange, pseudorange rate and Doppler frequency, with the inertial measurements to achieve high navigational accuracy in GNSS-challenged environments. The accurate estimation of measurement noise covariance can ensure the quick convergence of the Kalman filter and the accuracy of the navigation results. Existing tightly coupled integrated navigation systems employ either constant noise covariance or simple noise covariance updating methods, which cannot accurately reflect the dynamic measurement noises. In this article, we propose an adaptive measurement noise estimation algorithm using a transformer and residual denoising autoencoder (RDAE), which can dynamically estimate the covariance of measurement noise. The residual module is used to solve the gradient degradation problem. The DAE is adopted to learn the essential characteristics from the noisy ephemeris data. By introducing the attention mechanism, the transformer can effectively learn the time and space dependency of long-term ephemeris data, and thus dynamically adjusts the noise covariance with the predicted factors. Extensive experimental results demonstrate that our method can achieve sub-meter positioning accuracy in the outdoor open environment. In a GNSS-degraded environment, our proposed method can still obtain about 3 m positioning accuracy. Another test on a new dataset also confirms that our proposed method has reasonable robustness and adaptability.
Funder
National Key Research and Development Program
Action Plan Project of the Beijing University of Posts and Telecommunications supported by the Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Beijing Natural Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adaptive Estimation of Multiple Fading Factors Based on RGAM Model;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30