Abstract
Compared with co-polarized (HH/VV) normalized radar cross-section (NRCS) backscattered from the sea surface, there is no saturation phenomenon in cross-polarized (HV/VH) NRCS when wind speed is greater than about 20 m/s, so cross-polarized synthetic aperture radar (SAR) images can be used for high wind speed monitoring. In this work, a new geophysical model function (GMF) is proposed to describe the relation of the C-band cross-polarized NRCS with wind speed and radar incidence angle. Here, sixteen ScanSAR wide mode SAR images acquired by RADARSAT-2 (RS-2) under tropical cyclone (TC) conditions and the matching wind speed data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Stepped-Frequency Microwave Radiometer (SFMR) are collected and divided into datasets A and B. Dataset A is used for analyzing the effects of the wind field and radar incidence angle on the reference noise-removed cross-polarized NRCS, and for proposing the new GMF for each sub-swath of the SAR images, while dataset B is used to retrieve wind speed and evaluate the validity of the new GMF. The comparisons between the wind speeds retrieved by the new GMF and the collocated ECMWF and SFMR data demonstrate the excellent performance of the new GMF for wind speed retrieval. To analyze the universality of the new GMF, wind speed retrievals based on 32 Sentinel-1A/B (S-1A/B) extra-wide-swath (EW) mode images acquired under TC conditions are also compared with the collocated wind speeds measured by the Soil Moisture Active Passive (SMAP) radiometer, and the retrieved wind speeds have RMSE of 3.667 m/s and a bias of 2.767 m/s. The successful applications in high wind speed retrieval of different tropical cyclones again supports the availability of the new GMF.
Funder
National Natural Science Foundations of China
Shandong Provincial Natural Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献