High Spatiotemporal Resolution PM2.5 Concentration Estimation with Machine Learning Algorithm: A Case Study for Wildfire in California

Author:

Cui Qian,Zhang FengORCID,Fu Shaoyun,Wei Xiaoli,Ma Yue,Wu Kun

Abstract

As an aggregate of suspended particulate matter in the air, atmospheric aerosols can affect the regional climate. With the help of satellite remote sensing technology to retrieve AOD (aerosol optical depth) on a global or regional scale, accurate estimation of PM2.5 concentration has become an important task to quantify the spatiotemporal distribution of AOD and PM2.5. However, due to the limitations of satellite platforms, sensors, and inversion algorithms, the spatiotemporal resolution of current major AOD products is still relatively low. Meanwhile, for the impact of cloud, the AOD products often have a serious data gap problem, which also objectively limits the spatiotemporal coverage of predicted PM2.5 concentration. Therefore, how to effectively improve the spatiotemporal resolution and coverage of PM2.5 concentration under the requisite accuracy is still a grand challenge. In this study, the fused high spatial-temporal resolution AOD data in our previous study were used to estimate the ground PM2.5 concentration through machine learning algorithms, the deep belief network (DBN). The PM2.5 data had spatiotemporal autocorrelation in geostatistics and followed the Gaussian kernel distribution. Hence, the autocorrelation model modified by Gaussian kernel function integrated with DBN algorithm, named Geoi-DBN, was used to estimate PM2.5 concentration. The cross-validation results showed that the Geoi-DBN (R2 = 0.86, RMSE = 6.84 µg m−3) performed better than the original DBN (R2 = 0.67, RMSE = 10.46 µg m−3). The final high quality PM2.5 concentration data can be applied for urban air quality monitoring and related PM2.5 exposure risk assessment such as wildfire.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3