Designing a Multi-Parameter Method to Assess the Adaptation Period of Crucian Carp under Stress Conditions of the Bionic Robot Fish

Author:

Wang Bin,Mao Hanping,Zhao Jian,Liu Yong,Wang YafeiORCID,Du Xiaoxue

Abstract

Changes in the physiological and behavioral states of fish are affected by foreign substances. Therefore, fish need a certain adaptation period to eliminate the stress response. Herein, in order to determine the adaptation period, the bionic robot fish was used to obtain behavioral information about crucian carp, which was tested at five time points (1st, 7th, 14th, 21st and 28th day) within 28 days. First, the fear response and exploratory behavior of crucian carp affected by three-color bionic robot fish were explored. Then, according to the measurement results of the behavior, morphology, and feeding, and the physiological and biochemical properties of the crucian carp, a multi-parameter evaluation method was proposed to determine the adaptation period of the crucian carp under this monitoring mode. The results showed that more than 4 areas were occupied by crucian carp from the 21st day. From the 16th day, the number of crucian carp swimming with clear outlines gradually increased. The number of abnormal swimming occurrences decreased on day 13. More than 80% of the crucian carp body color returned to dark on the 23rd day. The crucian carp did not respond to food until day 19, when most of the crucian carp began to scramble for food. Food consumption reached more than two thirds on day 22. In addition, glucose and total protein leveled off after day 21, when mean hemoglobin levels were highest. Triglycerides showed a trend of first decreasing and then increasing. The pigmented area of the skin section gradually decreases and eventually stabilizes. In summary, it takes at least 23 days for the crucian carp to adapt to the influence of the bionic robot fish.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3