Abstract
Genetically improved farmed tilapia (Oreochromis niloticus, GIFT) is prone to hepatic metabolic imbalances and fatty liver disease during intensive farming. Long non-coding RNAs (lncRNAs) perform essential roles in various biological processes, including lipid metabolism. However, the lncRNAs involved in hepatic lipid metabolism in tilapia have not yet been identified. In this study, Illumina sequencing and bioinformatic analyses were performed on the liver of juvenile male GIFT fed a high-fat diet (HFD, 18.5% lipid) or a normal-fat diet (NFD, 8% lipid) for 56 days. RNA-seq analyses revealed 299 differentially expressed (DE)-mRNAs and 284 DE-lncRNAs between these two groups. The transcript profiles of 14 candidates (seven DE-mRNA and seven DE-lncRNAs) were verified by qRT-PCR, and the results were consistent with the RNA-seq results. Furthermore, 65 cis target genes and 3610 trans target genes of DE-lncRNAs were predicted. Functional analyses suggested that multiple metabolic pathways are affected by a high fat intake, including the PPAR signaling, fatty acid degradation, and fatty acid metabolism pathways. A co-expression network analysis indicated that many lncRNAs interact with numerous genes involved in lipid metabolism, and that some genes are regulated by multiple lncRNAs. The expression patterns of three lncRNAs (MSTRG.14598.1, MSTRG.6725.3, and MSTRG.13364.2) and their potential target genes (faldh, slc25a48, and fabp7a) in the PPAR signaling pathway were investigated. Our study provides new information about lncRNAs associated with lipid metabolism in tilapia.
Funder
Special Fund of the National Natural Science Foundation of China
Central Public-interest Scientific Institution Basal Research Fund, CAFS
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics
Reference60 articles.
1. Interactive effects of water salinity and dietary methionine levels on growth performance, whole-body composition, plasma parameters, and expression of major nutrient metabolism genes in juvenile genetically improved farmed Tilapia (Oreochromis niloticus);Xu;Aquaculture,2022
2. High Fat Diet-Induced miR-122 Regulates Lipid Metabolism and Fat Deposition in Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) Liver;Qiang;Front. Physiol.,2018
3. Causes of fatty liver in farmed fish: A review and new perspectives;Du;J. Fish. China,2014
4. Identification and characterization of lipid metabolism-related microRNAs in the liver of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) by deep sequencing;Tao;Fish. Shellfish Immun.,2017
5. Effects of High-Fat Diet on Steatosis, Endoplasmic Reticulum Stress and Autophagy in Liver of Tilapia (Oreochromis niloticus);Jia;Front. Mar. Sci.,2020
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献