Cu/Zn Superoxide Dismutase and Catalase of Yangtze Sturgeon, Acipenser dabryanus: Molecular Cloning, Tissue Distribution and Response to Fasting and Refeeding

Author:

Shi Qingchao,Xiong Xiaoqin,Wen ZhengyongORCID,Qin Chuanjie,Li Rui,Zhang Zhiyong,Gong Quan,Wu Xiaoyun

Abstract

Superoxide dismutase and catalase are two major antioxidant enzymes in the fish antioxidant defense system, which can remove excess reactive oxygen species and protect fish from stress-induced oxidative damage. The present study aimed to clone the sequences of Yangtze sturgeon, Acipenser dabryanus, Cu/Zn superoxide dismutase (AdCu/Zn-SOD) and catalase (AdCAT), and to explore changes of gene expression in the liver and intestine during fasting and refeeding. A total of 120 fish were exposed to four fasting and refeeding protocols (fasting for 0, 3, 7, or 14 d and then refeeding for 14 d). The coding sequences of AdCu/Zn-SOD and AdCAT encoded 155 and 526 amino acid proteins, respectively, both of which were expressed mainly in the liver. During fasting, when compared to the control group, liver AdCu/Zn-SOD expression was significantly higher in the 3- and 14-d groups, whereas its intestinal expression increased significantly only in the 7-d group. Liver AdCAT expression increased significantly in the 3-, 7-, and 14-d groups. During refeeding, liver AdCu/Zn-SOD expression increased significantly in the 3-, 7-, and 14-d groups compared with those in the control group. Similarly, intestinal AdCu/Zn-SOD expression increased significantly in the 3- and 7-d groups. Moreover, intestinal AdCAT expression was significantly higher in the 3-d group than in the control group, but decreased significantly in the 14-d group. Our findings indicated that AdCu/Zn-SOD and AdCAT play important roles in protecting fish against starvation-induced oxidative stress. Yangtze sturgeon exhibited the potential to adapt to a starvation and refeeding regime.

Funder

Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3