Earlier Activation of Interferon and Pro-Inflammatory Response Is Beneficial to Largemouth Bass (Micropterus salmoides) against Rhabdovirus Infection

Author:

He Runzhen,Liang Qianrong,Zhu Ningyu,Zheng Xiaoye,Chen Xiaoming,Zhou Fan,Ding Xueyan

Abstract

In order to understand the immune response of largemouth bass against Micropterus salmoides Rhabdovirus (MSRV), assisting disease resistance breeding, three largemouth bass breeding varieties Micropterus salmoides “Youlu No 3” (U3), “Youlu No 1” (U1) and “Zhelu No 1” (P1) were challenged intraperitoneally with MSRV. Serum and tissues were sampled to study the changes in non-specific immune parameters, viral loads, and transcript levels of immune-related genes, and the cumulative mortality rate was recorded daily for 14 days. The results showed that the cumulative mortality rates in the U1, P1, and U3 groups were 6.66% ± 2.89%, 3.33% ± 2.89%, and 0, respectively. The higher mortality may attribute to the increased viral loads after infection in the liver (2.79 × 105 and 2.38 × 105 vs. 1.3 × 104 copies/mg), spleen (2.14 × 105 and 9.40 × 104 vs. 4.21 × 103 copies/mg), and kidney (3.59 × 104 and 8.40 × 103 vs. 2.42 × 103 copies/mg) in the U1 and P1 groups compared to the U3 group. The serum non-specific immune parameters (lysozyme, catalase, and acid phosphatase) were found to be increased significantly in the U3 group. In addition, the transcripts of interferon-related genes (IFN-γ, IRF3, and IRF7) and pro-inflammatory-related genes (TNF-α and IL-1β) exhibited up-regulation and peaked at 6 h post infection in the U3 group, which also exhibited up-regulation but peaked at 12–24 h post infection in the U1 and P1 groups. In conclusion, these findings indicate that earlier activation of interferon and pro-inflammatory response is beneficial to largemouth bass against MSRV infection. This experiment may provide an insight into understanding the immune mechanism of largemouth bass against MSRV infection and contributes to molecular-assisted selection.

Funder

Public Welfare Technology Research Program of Zhejiang Science and Technology Department

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3