Estimation of Genetic Parameters and Optimum Breeding Programme Design in Korean Flatfish Breeding Population

Author:

Dinh Phuong Thanh N.ORCID,Park Jong-WonORCID,Ekanayake Waruni,Kim YeongkukORCID,Lee Dooho,Lee Dain,Jung Hyo Sun,Kim JulanORCID,Yang Hye-RimORCID,Lee Heegun,Yoon Sangwon,Lee Jeong-Ho,Lee Seung Hwan

Abstract

Olive flounder (Paralichthys olivaceus) is a vital aquaculture species in East Asia. However, few studies that estimate the genetic parameters of this species have been conducted. We estimated the genetic parameters of growth traits and designed an optimum breeding programme for this species. Heritability, genetic and phenotypic correlations, and breeding values were estimated for growth traits: body weight (BW), total length (TL), and condition factor (CF). A linear mixed animal model using the restricted maximum likelihood (REML) algorithm was applied to the statistical analysis of 9 traits (BW, TL, and CF at 11, 18, and 22 months of age) for a total of 54,159 animals from 7 generations. Increases of 13%, 8%, and 6.5% in BW, TL, and CF at the harvest stage were observed, respectively, after 7 generations of selection. The heritabilities of all growth traits were moderate, ranging from 0.35 to 0.46. The phenotypic and genetic correlations between BW and TL were high and positive in all three stages (0.91 and 0.92, 0.91 and 0.93, and 0.88 and 0.91). The estimated breeding values of BW and TL increased over the generations; however, the estimated breeding value of CF fluctuated. The optimum progeny number within full-sib families for an accuracy of 0.632 is suggested to be between 10 and 25. Findings indicated that a considerable response to selection and single-trait selection based on BW would be effective in olive flounder.

Funder

National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3