A Systematic Review of the Behavioural Changes and Physiological Adjustments of Elasmobranchs and Teleost’s to Ocean Acidification with a Focus on Sharks

Author:

Zemah-Shamir ZivORCID,Zemah-Shamir ShiriORCID,Scheinin Aviad,Tchernov Dan,Lazebnik Teddy,Gal GideonORCID

Abstract

In recent years, much attention has been focused on the impact of climate change, particularly via ocean acidification (OA), on marine organisms. Studying the impact of OA on long-living organisms, such as sharks, is especially challenging. When the ocean waters absorb anthropogenic carbon dioxide (CO2), slow-growing shark species with long generation times may be subjected to stress, leading to a decrease in functionality. Our goal was to examine the behavioral and physiological responses of sharks to OA and the possible impacts on their fitness and resilience. We conducted a systematic review in line with PRISMA-Analyses, of previously reported scientific experiments. We found that most studies used CO2 partial pressures (pCO2) that reflect representative concentration pathways for the year 2100 (e.g., pH ~7.8, pCO2 ~1000 μatm). Since there is a considerable knowledge gap on the effect of OA on sharks, we utilized existing data on bony fish to synthesize the available knowledge. Given the similarities between the behaviors and physiology of these two superclasses’ to changes in CO2 and pH levels, there is merit in including the available information on bony fish as well. Several studies indicated a decrease in shark fitness in relation to increased OA and CO2 levels. However, the decrease was species-specific and influenced by the intensity of the change in atmospheric CO2 concentration and other anthropogenic and environmental factors (e.g., fishing, temperature). Most studies involved only limited exposure to future environmental conditions and were conducted on benthic shark species studied in the laboratory rather than on apex predator species. While knowledge gaps exist, and more research is required, we conclude that anthropogenic factors are likely contributing to shark species’ vulnerability worldwide. However, the impact of OA on the long-term stability of shark populations is not unequivocal.

Funder

This research was funded by the Morris Kahn Marine Research Station and the Department of Marine Biology of the University of Haifa, as part of Dr Ziv Zemah-Shamir's Ph. D Dissertation

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3